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Measurement error causes biases in regression fits. If one could accurately measure exposure to
environmental lead media, the line obtained would differ in important ways from the line obtained
when one measures exposure with error. The effects of measurement error vary from study to
study. It is dangerous to take measurement error corrections derived from one study and apply
them to data from entirely different studies or populations. Measurement error can falsely
invalidate a correct (complex mechanistic) model. If one builds a model such as the integrated
exposure uptake biokinetic model carefully, using essentially error-free lead exposure data, and
applies this model in a different data set with error-prone exposures, the complex mechanistic
model will almost certainly do a poor job of prediction, especially of extremes. Although mean

blood lead levels from such a process may be accurately predicted, in most cases one would
expect serious underestimates or overestimates of the proportion of the population whose blood
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Overview
This article focuses on the role of
measurement error in linear regression, with
special emphasis on relating a single envi-
ronmental lead media exposure to blood
lead in children and validating complex
mechanistic models. For further details and
a general overview of the topic, including
work on multiple media exposures and non-
linear regression models, see Carroll et al.
(1); Fuller (2) should also be consulted for
the linear model. Our emphasis on the
simplest model is deliberate because the
ideas are best understood in this context.
However, all of the global conclusions
carry over to more complex models.
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There are three major points in this
article:
* Measurement error causes biases in

regression fits. If one could accurately
measure exposure to the environmental
lead media, the line obtained would
differ in important ways from the line
obtained when one measures exposure
with error.

* The effects of measurement error vary
from study to study. It is dangerous to
take measurement error corrections
derived from one study and apply them
to data from entirely different studies
or populations.

* Measurement error can falsely invalidate
a correct (complex mechanistic) model.
If one builds a model such as the inte-
grated exposure uptake biokinetic
(IEUBK) model carefully, using essen-
tially error-free lead exposure data, and
applies this model to a different data set
with error-prone lead exposures, the
complex mechanistic model will almost
certainly do a poor job of prediction,
especially of extremes. Although mean
blood lead levels from such a process may
be accurately predicted, in most cases one
would expect serious underestimates or

overestimates of the proportion of the
population whose blood lead level
exceeds certain standards.

Measurement Error Models
Measurement error models have a common
structure:
* An underlying model for a response

(e.g., blood lead levels) in terms of
predictors (e.g., the IEUBK model).
This is the model we would fit if all vari-
ables were observed without error. In
what follows, we will call Ythe response.

* A variable that is measured subject to
error (e.g., exposure to lead via wipe
samples). We will call this variable X,
e.g., the average environmental lead
level one might obtain in wipe sam-
pling if one does many wipe samples
per day for a fairly large number of
days. In other words, Xis the "true"
exposure. It is often called the error-
prone predictor or the latent predictor.

* The observed value of the mismeasured
variable, e.g., the average of a few wipe
samples done on a single day. We will
call this W

* Those predictors that for all practical
purposes are measured without error
(e.g., age, race, gender), which we will
call Z

* We are interested in relating the
response Yto the true predictors (Z,X).
One method, often called the naive
method, simply replaces the error-
prone predictor Xwith its measured
version W This substitution typically
leads to biases in parameter estimates
and can lead to misleading inferences.

* The goal of measurement error modeling
is to obtain nearly unbiased estimates
and inferences. Attainment of this goal
requires careful analysis. Substituting W
for Xbut making no adjustments in the
usual fitting methods for this substitu-
tion leads to estimates that are biased,
sometimes seriously. In assessing mea-
surement error, careful attention needs to
be given to the type and nature of the
error and to the sources of data that
allow modeling of this error.
Of course, it should be obvious that

one should design studies and instruments
in such a way as to lessen or eliminate
measurement error.

Computer Programs
Splus and SAS computer programs (on
SPARC archicecture SunOS versions 4 and
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5 and for Windows on PCs) are available
on the World Wide Web at http://stat.
tamu.edu/qvplqvfhtml
Models for Measurement Error
There are many models for measurement
error (1). For purposes of specificity, we
will base our discussion on the additive
error model, i.e., observed lead exposure W
differs from accurately measured lead expo-
sure X because of a random addition of
measurement error. The random measure-
ment error will be said to have variance UT.
We are not suggesting that observed lead

exposure (usually, of course, in the log scale)
necessarily differs from true lead exposure
(again in the log scale) in an additive way.
There are many other ways that measure-
ment error can occur. The purpose of this
paper is to point out some of the effects of
measurement error, and it seems preferable
to illustrate these effects in an important
special case. Although the formulas and
techniques differ depending on the form of
measurement error, our three basic points
remain essentially invariant to this form.

Carroll et al. (1) discuss in detail
various ways to understand the form of
measurement error.

Transportability ofModels
and Parameters
In some studies, the measurement error
process is not assessed directly, but data
from other independent studies (called
external data sets) are used instead. We say
that parameters of a model can be trans-
ported from one study to another if the
model holds with the same parameter values
in both studies.

In many instances, approximately the
same error model holds across different pop-
ulations. For example, consider wipe sam-
pling at two different locations. Assuming
similar levels of training for technicians
making the measurements and a similar pro-
tocol, it may be reasonable to expect that
the distribution of the error in the recorded
measure depends only on the long-term
result, not on the location, the technician
making the measurement, or on the value of
Xbeing measured. Thus, in classical error
models it is often reasonable to assume that
the error distribution is the same across
different populations, i.e., transportable.

One of the most common mistakes
made in that area is to overdo the idea of
transportability; in particular, to transport a
correction for measurement error from one
study to the next. For instance, although
the properties of errors of measurement

may be reasonably transportable, the
properties of the true (or latent) predictor
Xare rarely transportable, as they depend so
heavily on the population being sampled,
and the corrections for measurement error
in the two populations will be strikingly
different. As another example, the distribu-
tion of true wipe sampling in a population
defined in a single area is hardly likely to be
transportable to the nation at large. Carroll
and Stefanski (3) give an explicit example
of the dangers of assuming transportability.

Linear Regression and the
Effects of Measurement Error
Overiew
A comprehensive account of linear
measurement error models can be found in
Fuller (2). Carroll et al. (1) give a briefer
overview of the essential issues.

In what follows, we will assume for
illustrative purposes that blood lead is
related to lead exposure linearly (possibly
after a logarithmic transformation). We
will refer to this as a complex model and
will even blur the distinction between this
model and the IEUBK model. We hope
that the reader will forgive us for these sim-
plifications. Our three main points hold
generally, but explicit and easy answers are
available in the linear case, and thus are
ideal for illustrating the main ideas.

Many textbooks contain a description
of measurement error in linear regression,
usually focusing on simple linear regression
and concluding that the effect of measure-
ment error is to bias the slope estimate in
the direction of zero. Bias of this nature is
commonly referred to as attenuation or
attenuation to the null. We will repeat some
of this work but with a more pronounced
emphasis on prediction than is typical.
However, before proceeding, it is important
to place this topic in a broader context.

In general (linear and nonlinear)
regression problems, the effects of measure-
ment error can be complex. In multiple lin-
ear regression, the effects of measurement
error vary depending on: a) the regression
model, be it simple or multiple regression;
b) whether the predictor measured with
error is univariate or multivariate; and
c) the presence of bias in the measurement.
The effects can range from the simple
attenuation described above to situations in
which real effects are hidden, observed data
exhibit relationships that are not present in
the error-free data, and even the signs of
estimated coefficients are reversed relative
to the case with no measurement error.

The key point is that the measurement
error distribution determines the effects of
measurement error; thus, appropriate
methods for correcting for the effects
of measurement error depend on the
measurement error distribution.

Simple Linear Regrion
with Additive Er:ro
Regression to the Mean
We start with the simple linear regression
model with intercept P3o, slope P., and
variance about the line a 2. The true val-
ues of the predictor are called X, and with
considerable license we will refer to this as
true lead exposure, and assume that it has
mean p. and variance a2. The error model
is additive with error variance a2.

To illustrate the attenuation associated
with the additive measurement error, we
simulated data from 10 observations, with
CY216U=i, 0 =°J,3= 1 and 2= 25. In
Figure 1, we plot the blood lead levels Y
against the true environmental lead expo-
sures X. Note the steep slope in the plot
and that the observations are tightly
bunched near the line. This indicates that,
in actuality, there is a strong and nearly
direct relationship between blood lead
levels and environmental exposure.
We next illustrate the effects of

measurement error by displaying in Figure 2
what might happen if lead exposure were
measured with error. In this plot, in
addition to the true fits of Figure 1, the
empty circles and attenuated line depict
the blood lead levels Yand observed, error-
prone environmental lead levels W along
with the fitted regression line. There are

x
Figure 1. Illustration of additive measurement error
model. (c) true (YX) data and the line is the least-
squares fit to these data.
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0

Xand W

Figure 2. Illustration of additive measurement error
model. (.) true (R,X) data and the steeper line is the
least squares fit to these data. The empty circles and
attenuated line are the observed (R,W) data and the
associated least-squares line.

two important, indeed critical, points that
this figure illustrates.

a) The effect of ignoring measurement
error is to produce a biased estimate of the
line. In fact, it is well known that the line
fitted with error-prone exposure data esti-
mates not the true slope 3, but instead
A,, where

A =reliability ratio= 2J < 1. [11
X U

The attenuating factor, X, is called the
reliability ratio.

b) Figure 2 also illustrates that the fit to
the line has seriously degraded. Not only is
the line attenuated, but the error about the
line has vastly increased. Indeed, while the
error about the line with reliably measured
lead exposure is a2, the error about the
line with the error-prone lead exposure
measures is

residual variance of observed data
= a2 +A23 2

This facet of the problem is often ignored,
but it is important. Measurement error
causes a dual difficulty: not only is the slope
attenuated, but the data are more noisy,
with an increased error about the line.

Figure 2 is indicative of a phenomenon
called regression to the mean. Intuitively,
what this means is that the extremes in the
observed data (in this illustration, lead

exposure) are too extreme, and that the
true lead exposure is closer to the mean of
the data. In fact, in normally distributed
data, if true lead exposure has a population
mean g, then having observed the fallible
instrument, the best prediction of true lead
exposure for a single individual with
observed lead exposure Wis p,( 1-X + X W;
where the reliability ratio is X < 1 and is
defined in Equation 1. The net effect is
that the best (linear) predictor of true lead
exposure is always closer to the overall
mean than any observed but error-prone
lead exposure.

The foregoing is one facet of regression
to the mean. A more common definition is
complementary. For a child with an ext-
reme observed but error-prone exposure, if
one repeats the measurement and obtains a
second (replicated) measure, this replicate
is generally less, and often much less, than
the original extreme value.

Transportability
We now are in a position to see why it is
that corrections for measurement error
derived from one study should not be
applied directly to a second study. The rea-
son is that the reliability ratio (Equation 1)
depends critically on the variance of true
lead exposure. This variability of lead expo-
sure may differ greatly from study to study,
leading to different reliability ratios.

Multiple Regression: Single Covariate
Measured with Error
In multiple linear regression the effects of
measurement error are more complicated,
even for the additive error model. The full
details are beyond the scope of this paper;
see Carroll et al. (1), especially Chapters 2
and 1 1.

Multiple Covariates Measured
with Error
If multiple covariates are measured with
error, then the direction of the bias
induced by this error does not follow any
simple pattern. One may have attenua-
tion, reverse attenuation, changes of sign,
an observed positive effect even at a true
null model, etc. This is especially the case
when the predictors measured with error
are correlated or their errors are corre-
lated. With such problems, there really
seems to be no substitute for a careful
measurement error analysis.

Correcting for Bias
As we have just seen, the ordinary least
squares estimator is typically biased under

measurement error, and the direction and
magnitude of the bias depends on the
regression model and the measurement
error distribution. The usual method of
correcting for such measurement error is
the method of moment; see Fuller (2),
especially Chapter 2.

Another well-publicized method for
linear regression in the presence of mea-
surement error is orthogonal regression [see
Carroll and Ruppert (4) for criticism]. We
believe this method is used too frequently.

Prediction
We are now in a position to describe the
third of the major points we mentioned in
the "Overview." Specifically, it is our con-
tention that if one builds a complex mecha-
nistic model such as IEUBK model using
reliable environmental lead exposure data,
one can expect that it will do a poor job of
prediction when applied to error-prone lead
exposures, except possibly in predicting the
mean blood lead level.

The point is best made graphically.
Consider Figure 3. This is meant to illustrate
the fitted prediction line from a complex
model built using the best available data.
In actuality, the line is ,0 + PX where
IBo = O,'.x= 1. For a given true lead exposure
level X, we predict that on average the
blood lead level will be PO + 3.X

Xand W

Figure 3. This illustrates the effect of measurement
error on prediction. The solid (steeper) line is the pre-
diction line that one would use if there were no mea-
surement error. The dashed line is the predictions one
would make if lead exposure were measured with
error. Note that while the prediction at the mean
observed lead exposure is approximately correct, the
predictions are wrong at the high levels of exposure
that are typically of interest. In this plot, the mechanis-
tic model (solid line), e.g., IEUBK, will overestimate
exceedance probabilities.
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In Figure 3, we also add in the
(dashed) line that occurs if one has error-
prone lead exposure levels. That is, for a
given error-prone, observed lead exposure
level W this is the average blood lead level
that will be observed. A mathematical
justification is given in the "Appendix,"
but effectively this is the observed (dashed)
line in Figure 2 based on large sample sizes.

In considering Figure 3, note what
happens. Even though the complex model
(e.g., IEUBK model) is a perfectly correct
model in relating blood lead levels to true
lead exposure, it does a poor job of
predicting blood lead levels from error-
prone lead exposures. Although the
predicted blood lead level at the mean
lead exposure is approximately correct,
the complex model simply grossly mis-
estimates the effect of lead exposure at
high levels.

Another way to think of Figure 3 is in
terms of exceedances. Suppose that one is
interested in the percentage of individuals
whose blood lead exceeds a threshold t.
That is, one builds a complex model, then
applies it to a new data set that has error-
prone lead exposures. One method is sim-
ply to write down the predictions in the
new data and count the percentage of blood
lead predictions that exceed the threshold.
Figure 2 makes it clear that this prediction

will simply be in error, and thus the true
effect of lead exposure on blood lead levels
will be misjudged. In the "Appendix," we
construct a fictitious situation in which 9%
of the population actually exceeds a thresh-
old, but by ignoring measurement error we
would estimate that 16% of the population
exceeds the threshold.

More complicated procedures for
estimating the percentage of a population
exceeding a threshold are available; see the
"Appendix" for a technical analysis of one
such method. The important point is this: If
one carefully fits a model such as the IEUBK
using reliable data, and then applies this
model to error-prone lead exposures, one can
expect predictions of the percentage of the
population exceeding a blood lead level
threshold to have bias, often serious bias. If
one really wants to validate a complex model
on error-prone exposure data, a more com-
plex process is required that carefully takes
into account all facets of the problem,
including measurement error. A brief
overview of this is given in the "Appendix."

Discussion
We have shown that measurement error of
the type one might expect in lead exposure
data will bias parameter estimates. Models
fit with error-prone exposures will not be
accurate indicators of the model that

relates true exposure to blood lead levels.
Biases of this type are well known and
have been discussed extensively in the
statistics literature.

Less well known is the effect of
measurement errors on prediction. A model
relating blood levels to true lead exposure
that is applied to error-prone exposures can
be expected to yield a biased estimate of
quantities such as the percentage of the
population whose blood lead exceeds a
given threshold; interestingly, the mean
blood lead is typically not badly affected by
errors in exposures. In the "Appendix," we
construct a fictitious situation in which 9%
of the population actually exceeds a thresh-
old, but by ignoring measurement error we
would estimate that 16% of the population
exceeds the threshold.

What this means is that complex models
such as the IEUBK model cannot be vali-
dated by applying them to data with error-
prone lead exposures. Even if this model is
correct in all respects, we have shown that we
expect it will not perform very well in esti-
mating probabilities of high blood levels.
Although there are statistical approaches to
validating the model properly (see the
"Appendix" for one such approach at a theo-
retical level), it remains far easier to validate
the complex model on data for which expo-
sure has been relatively carefully ascertained.

Appendix
Estimation ofExceedances
We demonstrate here what might happen
when one uses a complex model fit using
reliable data and then applies it to error-
prone data. We assume that one is inter-
ested in estimating the percentage of the
population that has a response Yexceeding
a threshold t.
We distinguish between the reliable

data set and the error-prone data set. We
have used the reliable data set to construct
a model relating true lead exposure level
(X) to blood lead level (Y). In linear
regression, this gives good estimates of the
intercept (I30), the slope (pi3), and the
variance about the line (as).

In the error-prone data set, suppose
that the true exposures Xare normally dis-
tributed with mean zero and variance Ca2.
The assumption that Xhas mean zero is for
notational convenience only, and the con-
clusions do not depend on this. Generally,
we will be interested in thresholds of blood

lead that exceed the intercept of the line, so
that the threshold t> 30. Then the percent-
age of the error-prone population that has
blood lead exceeding t can be shown to be

pr(Y >t)=E{pr(Y >t1X)}

=E{l ( {tJ3r4o fxX}

=1_¢l t-fo 1. [2]
(+EfXXa) 2

Equation 2 is the actual percentage of the
error-prone population whose blood lead
levels exceed the threshold t.

If we ignore the measurement error in
the lead exposure levels, the complex mech-
anistic model leads us to predict that the
following percentage of the population has
blood lead levels exceeding t:

pr(Y > t error - prone)

= i-D t-fo [3]

,{09£ X(X
+

)}

As t> PO, what we see is that the complex
mechanistic model applied to error-prone

exposures results in an overestimate of the
percentage of the population with high
blood lead levels. For instance, if t= 1.5,
O=0, px= 1, 2=2= 1, and &2=0.25,

then the actual percentage of the popula-
tion with blood lead levels exceeding the
threshold is 9%, whereas the complex
model fit using reliable exposure data
would predict that 16% of the population
exceeds the threshold.

Of course, such overestimation need
not always be the case. The IEUBK model
is, of course, much more complex than the
simple linear model that we have con-

sidered, with more than one type of lead
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exposure and important demographic
characteristics such as gender, age, and race
that must be considered. What we can
predict in general is that in ignoring mea-
surement error, correct and carefully fit
complex models fit to error-prone exposure
data will typically do a poor job of estimat-
ing the percentage of the population
exceeding the threshold.

The Predictive Distribution
Suppose that one has carefully fit a model
for Y as a function of X, and has written
the density function of this model as

fvix(ylx). In our context, this model was
fit using reliable lead exposure data, and it
is assumed to be transportable from this
careful study to a second one that has
error-prone exposures. In this second data
set, the error model is fwix(w lx). The
actual predictive density requires a model
for Xitself in this second data set, which
we write as fx(x). We assume that the
errors in lead exposure measurements are
independent of blood lead.

With these assumptions, the density
function of blood lead in the second data
set is

f, (y)= ffy x(yI x)f1,1x(wI x)f (x)dxdw.

The appearance of the error model
fwix(wlx) makes it clear that special and
careful attention must be paid to the error
process. The appearance of the true expo-
sure distribution fxx makes it clear that
the effects of measurement error differ
from study to study, and one cannot sim-
ply assume that they are the same across
all studies.
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